Grayanotoxin-I-modified eel electroplax sodium channels. Correlation with batrachotoxin and veratridine modifications

نویسندگان

  • D S Duch
  • A Hernandez
  • S R Levinson
  • B W Urban
چکیده

To probe the structure-function relationships of voltage-dependent sodium channels, we have been examining the mechanisms of channel modification by batrachotoxin (BTX), veratridine (VTD), and grayanotoxin-I (GTX), investigating the unifying mechanisms that underlie the diverse modifications of this class of neurotoxins. In this paper, highly purified sodium channel polypeptides from the electric organ of the electric eel were incorporated into planar lipid bilayers in the presence of GTX for comparison with our previous studies of BTX (Recio-Pinto, E., D. S. Duch, S. R. Levinson, and B. W. Urban. 1987. J. Gen. Physiol. 90:375-395) and VTD (Duch, D. S., E. Recio-Pinto, C. Frenkel, S. R. Levinson, and B. W. Urban. 1989. J. Gen. Physiol. 94:813-831) modifications. GTX-modified channels had a single channel conductance of 16 pS. An additional large GTX-modified open state (40-55 pS) was found which occurred in bursts correlated with channel openings and closings. Two voltage-dependent processes controlling the open time of these modified channels were characterized: (a) a concentration-dependent removal of inactivation analogous to VTD-modified channels, and (b) activation gating similar to BTX-modified channels, but occurring at more hyperpolarized potentials. The voltage dependence of removal of inactivation correlated with parallel voltage-dependent changes in the estimated K1/2 of VTD and GTX modifications. Ranking either the single channel conductances or the depolarization required for 50% activation, the same sequence is obtained: unmodified > BTX > GTX > VTD. The efficacy of the toxins as activators follows the same ranking (Catterall, W. A. 1977. J. Biol. Chem. 252:8669-8676).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Veratridine modification of the purified sodium channel alpha- polypeptide from eel electroplax

In the interest of continuing structure-function studies, highly purified sodium channel preparations from the eel electroplax were incorporated into planar lipid bilayers in the presence of veratridine. This lipoglycoprotein originates from muscle-derived tissue and consists of a single polypeptide. In this study it is shown to have properties analogous to sodium channels from another muscle t...

متن کامل

Activation of the action potential Na+ ionophore by neurotoxins. An allosteric model.

The alkaloid neurotoxins aconitine, veratridine, grayanotoxin, and batrachotoxin activate the action potential Na+ ionophore by interaction with a common binding site. Concentration-response curves are fit by simple Langmuir isotherms. The fraction of Na+ ionophores activated at saturating concentrations of neurotoxin are: aconitine, 0.02; veratridine, 0.08; grayanotoxin, 0.51; and batrachotoxi...

متن کامل

Purified and unpurified sodium channels from eel electroplax in planar lipid bilayers

Highly purified sodium channel protein from the electric eel, Electrophorus electricus, was reconstituted into liposomes and incorporated into planar bilayers made from neutral phospholipids dissolved in decane. The purest sodium channel preparations consisted of only the large, 260-kD tetrodotoxin (TTX)-binding polypeptide. For all preparations, batrachotoxin (BTX) induced long-lived single-ch...

متن کامل

Differential effects of lipid-soluble toxins on sodium channels and L-type calcium channels in frog ventricular cells.

The effect of grayanotoxin I (GTX I), veratridine and aconitine with either an external or internal concentration of 100 microM on L-type calcium (Ca) channels was studied using the whole cell patch clamp and internal dialysis methods. The experimental conditions for the modification of sodium (Na) channels induced by the internal application of these toxins was determined by showing sustained ...

متن کامل

Effect of batrachotoxin on the electroplax of electric eel: evidence for voltage-dependent interaction with sodium channels.

Batrachotoxin under certain conditions has a strong depolarizing effect on the innervated membrane of the monocellular electroplax preparation from the electric eel, El-ectrophorus electricus. No effect is observed when the toxin (50-200 nM) is applied to the resting membrane for periods up to 1 hr. However, if the membrane is exposed to batrachotoxin and the cell is subjected to stimulation a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 100  شماره 

صفحات  -

تاریخ انتشار 1992